
Abstract. A method is proposed for e�cient use of
molecular symmetry in the evaluation of two-electron
integrals. This provides a means of avoiding the recal-
culation of symmetry-redundant integrals, and of sym-
metry-blocking matrices and supermatrices without the
usual time-consuming transformation procedures. Var-
ious methods for speeding up the calculation of integrals
are also discussed. Integral calculation times are given
for some representative molecules.

The major problem in large nonempirical MO-LCAO
calculations is the evaluation and storing of electron-
repulsion integrals. The number of two-electron inte-
grals will be roughly equal to 1

8 N 4, where N denotes the
number of basis functions. Thus in a calculation
involving 300 basis functions more than 109 integrals
have to be evaluated and stored. Since a maximum of
5� 106 integrals can be stored on one magnetic tape,
around 200 tapes would be necessary to store these
integrals. Also, their evaluation would require some
250 h on a medium-sized computer. The number of
values to be stored can be substantially reduced by
contracting the basis set, so reducing the number of
degrees of freedom and yielding a smaller e�ective basis.

This does not decrease the number of integrals to be
evaluated, however, and calculations greater than 300±
400 uncontracted or 150±200 contracted basis functions
are still quite unfeasible from a computational point of
view. The present paper suggests methods for making
large-scale calculations more practicable, with special
regard to computer time requirements and to the
capacity needed for the storage of two-electron integrals.

Molecular symmetry is known to be a powerful tool
for simplifying molecular orbital calculations. Probably
the most well-known advantage of using symmetry is the
blocking of various matrices (overlap matrix, ®rst-order
density matrix, Fock matrix, etc.) when a symmetry-
adapted basis is used. This will speed up such operations
as diagonalization, orthonormalization, etc., and de-
crease the core storage needed. However, of much
greater importance in large-size calculations is the sym-
metry blocking of the supermatrix of two-electron inte-
grals. In the case of a molecule with symmetry, the use of
a symmetry-adapted basis will considerably reduce the
number of two-electron integrals. This advantage can
also be used in nonsymmetric molecules, provided that
parts of the molecule are related by some local symme-
try.

Caution must be exercised, however, in using a
symmetry-adapted basis. A straight-forward approach
would be ®rst to construct a list of integrals over atomic
orbitals, and then to transform them to a symmetry basis
in a separate step. This method, involving the simulta-
neous handling of two large data sets, has been found to
be extremely time-consuming with more than 100 basis
functions. An entirely di�erent approach is therefore
suggested in this paper.

The molecular or local symmetry can also be used to
relate atomic integrals which are equal by symmetry,
thus avoiding the calculation of redundant integrals. The
simultaneous use of symmetry in both these contexts
would appear to be a nontrivial computational problem.
The only computer program known to the author which
combines both of these features is REFLECT [1]. In this
program symmetry was used in a very limited way,
taking only one two-fold symmetry element into ac-
count. However, the ideas used in REFLECT can be fur-
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ther generalized [as follows]. A symmetry-adapted basis
function /ka belonging to the irreducible representation
k can be constructed from the atomic orbital va and its
symmetry-related equals according to the expression

/ka �
X

i

cikgiva : �1�

Here fgig is a set of symmetry operators transforming va
to all symmetry-related sites in the molecule. Only
orbitals that are centred on symmetry-independent sites
in the molecule should therefore be considered. The
discussion will be restricted to groups with elements of
second order, i.e., groups where g2i � e for all elements
of the group, and consequently ck � �1 apart from a
common normalization factor. The sum over i [includes
only] operations which are nontrivial with respect to the
site of va.

An electron repulsion integral over symmetry-adapt-
ed basis functions can now be constructed:

/ka/lbj/mc/nd

ÿ � �X
i

X
j

X
k

X
l

cikcjlckmcln

� giva gjvbjgkvc glvd

ÿ �
: �2�

The atomic orbital integrals [on the right-hand side] of
this expression are invariant under operations on the
whole molecule by any of the members of the molecular
point group. If such a transformation is carried out with
the operator gÿ1i , the resulting expression is

X
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cikcjlckmcln va gÿ1i gjvbjgÿ1i gkvc gÿ1i glvd

ÿ �
�3�

Introducing

gJ � gÿ1i gj; gK � gÿ1i gk; gL � gÿ1i gl ; �4�
the coe�cients c will transform as

cjl � cJlcil; ckm � cKmcim; cln � cLncin ; �5�
and the total expression for the integral now becomesX
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�6�
If the product of the four irreducible representations k,
l, m, and n is the totally symmetric representation, the
product cikcilcimcin will equal unity regardless of the
index i. The case in which the product representation is
not totally symmetric is trivial, as this will render the
whole integral zero by symmetry. In all cases of
interest, therefore, the whole summation over i is
redundant and may be replaced by a constant multi-
plicative factor.

This procedure of simpli®cation can be further ex-
tended if the orbital va is centred on a certain symmetry
element, whereas any of the orbitals vb, vc, or vd [are
not]. The resulting formulae provide a way of avoiding
the recalculation of integrals related by the e�ective
molecular symmetry.

Given the four atomic orbitals va, vb, vc, and vd , the list
of symmetry-adapted integrals (/ka/lbj/mc/nd ) for all
allowed combinations of k, l, m, and n must be kept in
core until the loops over J , K, and L are completed. This
requires a maximum of M3 integrals to be handled and
stored simultaneously, M being the maximum number of
symmetry-equivalent orbitals that can be constructed
from one atomic orbital by using the set of operators
fgig.

If the integrals are to be used in a Hartree-Fock
calculation only, the size of the list can be reduced fur-
ther. The only integrals needed in this case are those of
type �kkjll� and �kljkl�, where k and l denote irre-
ducible representations. This makes it possible to delete
a considerable number of integrals from the list in cal-
culations involving more than two irreducible represen-
tations.

The P ;Q-supermatrix formalism [2] can be used to
combine these integrals in a convenient way. For a
closed-shell case, the expression for the Fock matrix
element Fkab becomes

Fkab � Tkab � Vkab �
X
lcd

DlcdPkab;lcd ; �7�

where

Pkab;lcd � �abjcd� ÿ 1
4�acjdb� ÿ 1

4�adjcb� : �8�
In this way the information needed from these three
integrals may be stored in one single number. The
integral list is thus further shortened in all cases with
more than one irreducible representation.

The use of the P ;Q-supermatrix formalism also sim-
pli®es the construction of the Fock matrix considerably.
In practice, the P and Q supermatrices can be obtained
without any transformation or reordering procedure
involving I/O by [computing] simultaneously the inte-
grals �abjcd�, �acjdb�, and �adjcb�, and by arranging the
loops so that recalculation of identical elements is
avoided. This will complicate the calculation somewhat
as the maximum number of elements to be stored si-
multaneously in core increases by a factor of 3. These
procedures can reduce the list to a reasonable size even
for quite large calculations. However, the computer time
needed to evaluate the many billions of integrals used in
a large calculation is still a troublesome factor. Several
procedures for speeding up this part of the calculation
have therefore been investigated.

Assuming a Gaussian-type basis, the expression for
an electron repulsion integral over primitive Gaussians
can be written formally as

�ijjkl� � SijSkl

X
N

RN �i; j; k; l�TN �i; j; k; l� : �9�

In this expression the S, R, and T factors are functions of
the orbital exponents and nuclear coordinates. Sij and Skl
are exponentials, and their product determines the order
of magnitude of the integral, as R and T are quite slowly
varying functions. A simple test can therefore be made
on the arguments of the exponentials, whether it is
necessary to calculate the integrals or not. It is found
that, especially in large calculations, a majority of the
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integrals need not be calculated at all as they are too
small to contribute signi®cantly to the ®nal result.

This way of simplifying calculations leads to a con-
siderable reduction of the integral evaluation time for
large calculations. It is easily programmed, and it is
employed in several MO-LCAO programs which are in
current use [1, 3].

From a computational point of view, the factors
RN �i; j; k; l� are quite complicated, involving square
roots, gamma functions, etc. On the other hand, they do
not depend on the directional properties of the basis
functions involved (i.e., x, y, or z for p-orbitals).
TN �i; j; k; l�, in contrast, are quite easily calculated but
di�er for di�erent directions. It is therefore advanta-
geous ®rst to compute a set of RN , then to evaluate all
integrals related in this way [through the factors TN ]
without recalculating the R factors. This will yield a
maximum of �2Lmax � 1�4 related integrals at the same
time, Lmax being the maximum azimuthal quantum
number. The number of symmetry integrals that must be
simultaneously kept in core is accordingly increased by
this factor.

When contracted Gaussians are used as a basis, the
expression for a two-electron integral becomes

�abjcd� �
X
i2a

X
j2b

SijCaiCbj

X
k2c

X
l2d

SklCckCdl

�
X

N

RN �i; j; k; l�TN �i; j; k; l� ; �10�

i, j, k, and l being primitive Gaussians constituting the
contracted orbitals a, b, c, and d, respectively [with
contraction coe�cients Cai etc]. As the R and T factors
are slowly varying compared to S, the integral may be
expressed approximately as

�abjcd� � rabrcd

X
N

�RN �TN �11�

where rab �
P

i2a

P
j2b SijCaiCbj; rcd �

P
k2c

P
l2d SklCck

Cdl, [and] �RN and �TN are evaluated using average values
for the orbital exponents. rab and rcd depend on two
indices only, and a list of rs can easily be precomputed
and saved in core. The product of rab and rcd hence
provides a rapid check on whether the integral should be
put equal to zero, approximated according to Eq.(11), or
evaluated with full accuracy as a sum of integrals over
primitive Gaussians.

The full use of symmetry, the P ;Q-supermatrix for-
malism and the use of the simpli®cations due to ex-
pression (9) result in a very complicated order of the
®nal supermatrix elements. It would therefore be most
inconvenient to try to arrange the elements on the out-
put unit in a canonical order. A separate reordering step
after the integral calculation is also undesirable, as this
would require the simultaneous handling of two large
data sets. It has therefore been found useful to assign
two indices to each supermatrix element, so making it
possible to write them out in an arbitrary order. When
indexed two-electron integrals are used, four or ®ve in-
dices are needed for each integral, and the construction
of the Fock matrix becomes quite a tedious procedure.
In contrast, only two indices are needed when P and
Q elements are used, and the construction of the Fock
matrix is in fact speeded up somewhat by this indexing.

The above ideas have been implemented in the Har-
tree-Fock part of the program system MOLECULE, which
is being developed [at the Institute of Theoretical Phys-
ics, University of Stockholm]. The CI part of this pro-
gram system has been described earlier [4]. The program
has been used in a number of Hartree-Fock calculations,
and the gain in simplicity and computer time is consid-
erable compared to earlier programs. This is especially
so for medium- and large-size calculations. The time
spent in the integral section for some representative
molecules is given in Table1.

Table 1 Examples of integral calculation times for some representative molecules. The times are given in minutes and refer to a UNIVAC
1108 computer

Molecule Basis set Contracted
basic set

Number
of GTOs

Number
of CGTOs

Number of
irr reps

Integral
time

Biphenyl
C12H10

(C/7,3)
(H/3)

(C/2,1)
(H/1)

222 70 4 37.2a

47.6a

Bicyclopenta-dienyl
C10H10

(C/7,3)
(H/3)

(C/2,1)
(H/1)

190 60 2
4

48.9
26.7

Cyclopenta-dienyl
C5H

ÿ
5

(C/8,4)
(H/4)

(C/2,1)
(H/1)

120 30 2
4

12.4
14.6

Pyrrole
C4H5N

(C,N/7,3)
(H/3)

(C,N/4,2)
(H/2)

95 60 4 15.7

Pyrrole
C4H5N

(C,N/7,3)
(H/3)

(C,N/2,1)
(H/1)

95 30 4 8.2

Benzene
C6H6

(C/8,4) (C/2,1) 144 36 1
2
4
8

60.9
32.1
19.2
20.4

a The di�erent values refer to a planar and nonplanar conformation, respectively
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